Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 9 Next »

ON THIS PAGE

This section describes the characteristics and operation of all connectors on the XD233 and XD1033.

Power Connector

The power connector for the XD233 and XD1033 is rated for 12V@3A. The plug is a right-side positive, locking 2-pin (1x2) connector.

3.5mm Serial

The UART (asynchronous serial) interface is a 3.5mm (1/8") jack that uses TTL for communication. The receiver will tolerate input voltages between -30V and +30V, with anything below 3V interpreted as a logical 1. The transmitter drives +5V for logical 0 and 0V for logical 1.

Note

The 3.5mm serial port can interoperate with some RS-232 compatible devices. It can receive from any RS-232 device, but transmission may not work depending on the electrical characteristics of the device.

The default baud rate of the RS-232 interface is 115200, with no parity, 8 data bits, and 1 stop bit. These settings can be configured in the software. The serial interface supports TX, RX, and ground only—RTS/CTS hardware flow control is not supported.

A serial cable plug that is inserted into the 3.5mm jack should use the following signaling:

  • Tip: Transmit
  • Ring: Recieve
  • Sleeve: Ground

The following diagram illustrates the behavior of the TX and RX signal:

GPIO

The XD233 and XD1033 have a 12-pin GPIO switch and LED connector, which allows the player to control external LEDs or other devices requiring 24mA of current or less.

The GPIO port is a standard design manufactured by Phoenix Contact, Wurth Electronics, and others. The XDx33 series ships with two pluggable GPIO terminal blocks, which can be inserted into the GPIO connector to make bare-wire contacts. An example part number for these terminal blocks can be found here.

If you are using the GPIO connector to drive LEDs, connect the LED outputs to the LED ANODE and connect the LED CATHODE to the ground. If you want to connect another device, then the output is capable of sourcing or sinking up to 3.3V at 24mA, but there is a series resistor of 100Ω in each line.

The connector also allows the connecting of external contact closures to the ground. In order to connect a switch, connect one side of the switch to the switch input, and connect the other side to one of the ground pins on the GPIO connector. The connector can also supply 3.3V at up to 500mA to an external device. The 3.3V output is polyfuse-protected and can source up to 500mA.

If one BrightSign player is driving the inputs on another BrightSign player, then you can drive at most three inputs from one output. The following calculations explain this limitation:

Note

The GPIO outputs have 100Ω series resistors; the GPIO inputs have 1K pullup resistors to 3.3V; and the input threshold is 2V high and .8V low. The high voltage is not problematic, but the low voltage can be if there are too many inputs connected to one output.

1 out driving 1 in

V=3.3*100/(100+1,000)=0.3

1 out driving 2 in

V=3.3*100/(100+500)=0.55

1 out driving 3 in

V=3.3*100/(100+333.3)=0.76

1 out driving 4 in

V=3.3*100/(100+250)=.94 (This is too high, so 1 output driving 3 inputs is the maximum)

 

The following table describes the pinout of the GPIO on the XT243 and XT1143:

Pin

Function

Pin

Function

1

GND

7

GND

2

3.3V

8

3.3V

3

BUTTON 0

9

BUTTON 4

4

BUTTON 1

10

BUTTON 5

5

BUTTON 2

11

BUTTON 6

6

BUTTON 3

12

BUTTON 7

 

The following schematic illustrates the pinout of the GPIO connector.

RJ45 LAN

The XD233 and XD1033 have an RJ45 connector for 1000BASE-T networking. The maximum length for Cat 5E cable is 100 meters; the allowed length can be higher or lower depending on the quality of the cable.

USB

The XD1033 has two USB 2.0 ports: one Type A and one Type C. The Type A connector can act as a dedicated charging port (DCP) when the two data pins are shorted together, and the Type C connector can operate as either a host or a device (i.e. a dual-role port).

Both ports are capable of transfer speeds up to 480 Mbit/s. The maximum length for a USB cable is 5 meters.

The following table illustrates the pinout of the USB 2.0 Type A host port:

pin

Description

pin

Description

1

VBUS

2

D-

3

D+

4

Ground

 

The following table illustrates the pinout of the USB 2.0 Type C host port:

pin

Signal Name

Description

Mating Sequence

pin

Signal Name

Description

Mating Sequence

A1

GND

Ground return

First

B12

GND

Ground return

First

A2

 

 

 

B11

 

 

 

A3

 

 

 

B10

 

 

 

A4

VBUS

Bus power

First

B9

VBUS

Bus power

First

A5

CC1

Configuration channel

Second

B8

 

 

 

A6

Dp1

Positive half of USB 2.0 differential pair – position 1

Second

B7

Dn2

Negative half of USB 2.0 differential pair – position 2

Second

A7

Dn1

Negative half of USB 2.0 differential pair – position 1

Second

B6

Dp2

Positive half of USB 2.0 differential pair – position 2

Second

A8

 

 

 

B5

CC2

Configuration channel

Second

A9

VBUS

Bus power

First

B4

VBUS

 Bus power

First

A10

 

 

 

B3

 

 

 

A11

 

 

 

B2

 

 

 

A12

GND

Ground return

First

B1

GND

Ground return

First

3.5mm Audio Connector

The XD233 and XD1033 have a combination analog/optical audio jack. To transmit a digital audio signal, use a TOSLINK optical audio cable with a 3.5mm connector. Analog and digital audio cannot be transmitted simultaneously.

The full-scale voltage output of the analog audio is 2V RMS. The minimum load impedance is 32Ω.

The analog audio connector has the following pinout:

  • Tip: Left audio
  • Ring: Right audio
  • Sleeve: Ground for audio signal

3.5mm IR Input/Output

The IR blaster generates or receives a space-encoded NEC or Pronto Hex signal. The two transported bit values of the signal (0 and 1) are encoded using differing lengths of low-time IR pulses.

The 3.5mm IR in/out port has the following pinout:

  • Tip: 3.3V
  • Ring: IR Input
  • Sleeve: IR Output

Note

The sleeve is used as a ground during input operations.

HDMI Output

The HDMI-out connector is used to send digital video and audio to HDMI-enabled sink devices. This connector is compatible with HDMI 2.0 devices, capable of outputting a maximum video resolution of 4096x2160x60p.

The following table illustrates the pinout of the HDMI connector:

pin

Description

pin

Description

1

TX2p

2

Ground

3

TX2n

4

TX1p

5

Ground

6

TX1n

7

TX0p

8

Ground

9

TX0n

10

TXCp

11

Ground

12

TXCn

13

CEC

14

NC

15

DDC SCL

16

DDC SDA

17

Ground

18

+5V DDC

19

HPD (Hot Plug Detect)

--

 

  • No labels